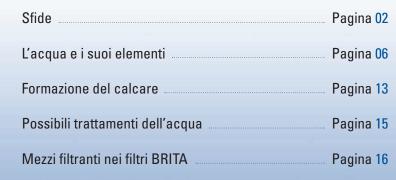


ABC dell' acqua


L'acqua potabile è l'alimento principale e il primo requisito per uno standard igienico elevato. Viene utilizzata negli ambiti più disparati: come bevanda, per la preparazione dei cibi e delle bevande o per la pulizia delle stoviglie. L'acqua potabile è un ingrediente fondamentale nella preparazione di numerosi alimenti. Ma l'acqua è molto di più, l'acqua è, nelle parole di Talete di Mileto, "il principio di tutte le cose, perché tutte le cose sono acqua e tutto fa ritorno all'acqua."

BRITA si dedica da oltre 40 anni all'acqua come risorsa ed è oggi una delle principali aziende a livello internazionale nel settore dell'ottimizzazione dell'acqua. Oltre 800 collaboratori a livello mondiale si occupano oggi del metodo per ottenere un'acqua perfetta:

- BRITA ricerca e consente di ottenere un'acqua dal gusto unico, per i cibi e le bevande.
- BRITA sviluppa sistemi di filtrazione ottimali che forniscono la quantità di acqua necessaria
 per macchine del caffè e per espresso per uso professionale, sistemi per la cottura a vapore
 e forni, distributori automatici e lavastoviglie.

Chi come BRITA mira alla perfezione, deve capire i principi fondamentali alla base di questa filosofia. Per questo motivo abbiamo riassunto tutto quello che c'è da sapere sull'acqua come risorsa nella pubblicazione BRITA Wasserfibel.

Indice

La prima sfida

Formazione di calcare in seguito alla durezza temporanea da carbonati eccessiva dell'acqua

Svantaggi concreti:

- tempi di fermo delle macchine prolungati
- maggiori costi di assistenza
- maggiori costi energetici
- macchie ed effetto scivoloso sulle posate, sulle stoviglie e sui bicchieri

Obiettivo: contenuto ottimale di minerali nell'acqua

La seconda sfida

Oltre al calcare, odori e sapori sgradevoli (ad es. composti clororganici) presenti nell'acqua rovinano gli aromi delle bevande

Svantaggi concreti:

- le bevande hanno un sapore sgradevole
- aspetto poco allettante
- clienti insoddisfatti
- le bevande hanno un odore sgradevole

2 03

La terza sfida

Tempi di inattività delle macchine a causa dell'elevata quantità di micro e macroparticelle presenti ell'acqua

Svantaggi concreti:

- le elettrovalvole non si chiudono correttamente
- · maggiori costi di manutenzione
- clienti insoddisfatti

L'obiettivo della filtrazione dell'acqua

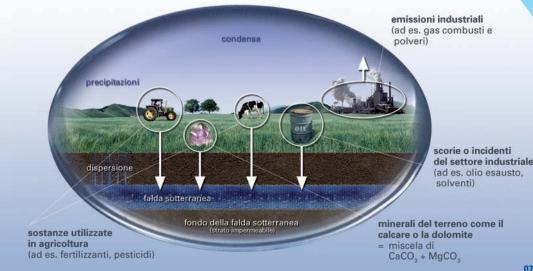
- Impedimento della formazione di calcare mediante rimozione o riduzione delle sostanze presenti nell'acqua responsabili della formazione del calcare.
- Rimozione degli odori e dei sapori sgradevoli dall'acqua
- Separazione della particelle deterioranti dall'acqua.

Tutto in un sistema di filtrazione compatto!

04

Componenti dell' acqua potabile

Nell'acqua potabile sono presenti numerose sostanze:


- sostanze naturali provenienti dall'ambiente, ad es. i minerali
- residui prodotti dall'inquinamento ambientale
- sostanze derivanti dal trattamento dell'acqua

Queste sostanze vengono suddivise in:

- sostanze inorganiche, ad es. i minerali
- sostanze organiche disciolte
- particelle organiche e inorganiche
- microrganismi

L'acqua e i suoi elementi

Come arrivano le sostanze nell'acqua?

I tipi di durezza dell' acqua

Contenuto complessivo di sale

Sodio, potassio, ferro, magnesio, calcio, rame ecc.

idrogeno-carbonato, solfati, cloruri, fosfato, nitrati ecc.

Durezza temporanea da carbonati

L'idrogeno-carbonato di calcio e magnesio è costituito da minerali che con il riscaldamento precipitano sotto forma di calcare o formano incrostazioni.

magnesio disciolti nell' acqua

Tutti gli ioni di calcio e

GH / Durezza complessiva

GH / KH + NKH

NKH / Durezza non da carbonati

(durezza permanente) ioni di calcio e di magnesio che si legano al solfato, al cloruro, al fosfato e ad altri anioni (ad eccezione dell'idrogeno-carbonato).

Range di durezza delle centrali idriche

Range di durezza 1 (morbido)

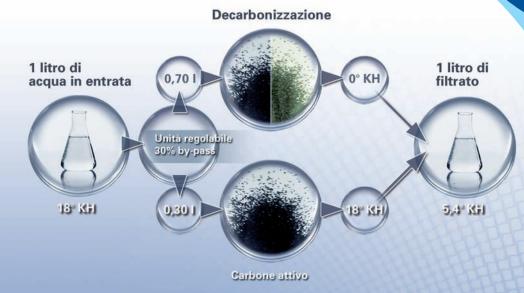
> somma Ca + Mg < 1,5 mmol/l GH < 8,4 °dH

Range di durezza 2 (semiduro)

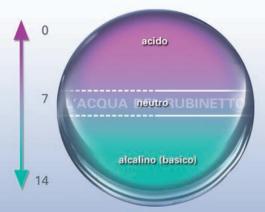
somma Ca + Mg 1,5 bis < 2,5 mmol/l GH 8,4 - 14 °dH

Range di durezza 3 (duro)

somma Ca + Mg > 2,5 mmol/l GH > 14 °dH


Distribuzione dei tipi di durezza

[la diversa configurazione del suolo determina forti oscillazioni regionali]



Acqua die by-pass

Definizione del valore pH

[pH = logaritmo decimale negativo della concentrazione di ioni di idrogeno in mol/l]

Indica con valori compresi tra 0 e 14 il grado di acidità o alcalinità (basicità) di una sostanza (come ad es. l'acqua).

A partire da un "punto neutro" si parla di un valore pH pari a 7. I valori inferiori vengono definiti acidi, i valori superiori alcalini.

L'acqua del rubinetto possiede, in base alla regione e al tipo d'acqua, un valore pH compreso tra 6,5 e 9.

Come si formano i depositi di calcare

- La durezza temporanea da carbonati corrisponde agli ioni di calcio e magnesio disciolti nell'acqua che appartengono all'idrogeno-carbonato.
- Nell'acqua del rubinetto tutti gli elementi dell'acqua sono bilanciati, tuttavia un aumento della pressione o della temperatura può distruggere tale equilibrio.
- In particolare in seguito al riscaldamento si formano a partire dagli ioni disciolti composti non solubili: le temute incrostazioni (dall'idrogeno-carbonato di calcio si formano calcare, anidride carbonica e acqua)
- I sedimenti di calcare precipitano sulle pareti estremamente calde e ruvide dei recipienti. Si forma uno strato che diventa sempre più spesso.

Componenti organiche

Le sostanze organiche vengono monitorare rigorosamente nell'acqua potabile. Molte di queste sostanze, come ad es. i pesticidi o i solventi, sono presenti con valori limite molto bassi. Tuttavia possono comparire in quantità ridotte.

Alcuni esempi:

- residui di fitofarmaci, solventi, prodotti industriali quali colori, vernici ecc.
- sostanze naturali provenienti dalla dispersione
- sostanze non meglio definite
- particelle

Sostanze di trattamento

Per il trattamento dell'acqua negli impianti comunali vengono aggiunte sostanze come ad es.:

- prodotti per l'eliminazioni di agenti intorbidanti flocculanti
- · sostanze per la rimozione di ferro o manganese
- · cloro per la disinfezione
- · composti clororganici

Una quantità residua di cloro rimane nelle tubature dell'acqua come protezione disinfettante. Assieme ai residui organici presenti nell'acqua possono formarsi odori e sapori sgradevoli.

Mezzi filtranti nei filtri BRITA

Scambiatore di ioni

- Demineralizzazione parziale / Demineralizzazione totale
- Decarbonizzazione
- Riduzione dei metalli pesanti (piombo, rame, zinco ...)

Carbone attivo

- Trattamento dell'acqua potabile al fine di migliorarla sia dal punto di vista dell'odore che del gusto
- Riduzione del cloro e dei suoi composti
- · Riduzione di sostanze organiche
- Decolorazione

Filtrazione delle particelle

- Rimozione delle macroparticelle, come ad es. ruggine, residui di calcare
- Rimozione di particelle organiche pelucchi
- Rimozione di particelle con diametro di µm

Definizione di scambiatore di ioni

Il materiale di qualità alimentare (plastica) con la proprietà di legare soltanto determinate componenti disciolte nell'acqua e quindi di rimuoverle dall'acqua.

Queste componenti legate (ad es. la durezza temporanea da carbonati) vengono nuovamente sciolte e rimosse mediante una cosiddetta rigenerazione dello scambiatore di ioni di BRITA.

Definizione di carbone attivo

I carboni attivi sono prodotti naturali e possiedono una grande superficie interna. I carboni attivi sono in grado di assorbire un'ampia gamma di sostanze.

Il volume dei pori dei carboni attivi è in generale maggiore di 0.2 ml/g, la superficie interna è maggiore di $400 \text{ m}^2/\text{g}$ (2 campi da tennis).

I carboni attivi che vengono utilizzati da BRITA vengono prodotti esclusivamente da gusci di noci di cocco.

Definizione di filtro antiparticolato

Nella zona di filtrazione dell'acqua i filtri antiparticolato sono in genere fasi di filtrazione meccaniche in grado di rimuovere in diversi modi le particelle dall'acqua.

Riepilogo

Mediante l'impiego dei filtri BRITA ogni prodotto si trasforma in un prodotto di ottima qualità, sia che si tratti di bevande, alimenti o stoviglie.

Si garantisce l'acqua migliore.

- nessuna micro e macroparticella dannosa
- una durezza temporanea da carbonati bilanciata (come previsto dall'Associazione tedesca del caffè)
- nessuna sostanza che compromette il sapore e l'odore
- una concentrazione sufficiente di minerali
- · nessun contenuto dannoso di sale

... e in un sistema di filtrazione compatto!

20

